
J. Fluid Mech. (2005), vol. 545, pp. 203–212. c© 2005 Cambridge University Press

doi:10.1017/S0022112005006919 Printed in the United Kingdom

203

The air bubble entrapped under a drop
impacting on a solid surface

By S. T. THORODDSEN1, T. G. ETOH2, K. TAKEHARA2,
N. OOTSUKA2 AND Y. HATSUKI2

1Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
2Civil and Environmental Engineering, Kinki University, Higashi-Osaka 577-8502, Japan

(Received 26 April 2005 and in revised form 21 August 2005)

We present experimental observations of the disk of air caught under a drop
impacting onto a solid surface. By imaging the impact through an acrylic plate with
an ultra-high-speed video camera, we can follow the evolution of the air disk as it
contracts into a bubble under the centre of the drop. The initial size and contraction
speed of the disk were measured for a range of impact Weber and Reynolds numbers.
The size of the initial disk is related to the bottom curvature of the drop at the initial
contact, as measured in free-fall. The initial contact often leaves behind a ring of
micro-bubbles, marking its location. The air disk contracts at a speed comparable
to the corresponding air disks caught under a drop impacting onto a liquid surface.
This speed also seems independent of the wettability of the liquid, which only affects
the azimuthal shape of the contact line. For some impact conditions, the dynamics of
the contraction leaves a small droplet at the centre of the bubble. This arises from a
capillary wave propagating from the edges of the contracting disk towards the centre.
As the wave converges its amplitude grows until it touches the solid substrate, thereby
pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of
increasing liquid viscosity is to slow down the contraction speed and to produce a
more irregular contact line leaving more micro-bubbles along the initial ring.

1. Introduction
The impact of drops onto a solid substrate is of practical importance in coating,

cleaning and cooling of surfaces. Molten drops of metal are used in soldering, and
inkjet printing is finding new applications. Recent advances include the printing
of polymeric circuits and large displays, Sirringhaus et al. (2000), which may cut
production costs drastically, making this a current area of active research. The
entrapment of a small bubble under the centre of an impacting drop is unavoidable
and often undesirable in the above applications. Many previous studies have shown
these entrapped bubbles, e.g. Chandra & Avedisian (1991) and Thoroddsen &
Sakakibara (1998), but have lacked the temporal resolution to observe their formation.
Most recently these bubbles have been observed by Van Dam & Le Clerc (2004) under
very small droplets, only 60 µm in diameter.

Numerical methods face a number of challenges in simulating this entrapment.
Recent work by Mehdi-Nejad, Mostaghimi & Chandra (2003) illustrates some of the
difficulties. The range of scales between the drop size and the thickness of the very
thin air sheet is ∼ 1000, and the boundary conditions at the contact line also have
to be modelled, see Bussmann, Chandra & Mostaghimi (2000). Theoretical treatment
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Figure 1. (a) Experimental setup, not to scale. The acrylic plate is 15 mm thick. (b) Drop
shapes during free-fall of a water drop. (c) Images used to measure the static contact angle
for water (left) and 80% mass fraction of glycerin/water mixture.

has mostly focused on the deformation of the drop before contact, see Gopinath &
Koch (2002).

Herein we present the first time-resolved observations of this air-entrapment process,
over a wide range of impact conditions.

2. Experimental setup
2.1. Optical setup and impact conditions

Figure 1(a) shows the experimental setup. The solid substrate was in all cases a
flat acrylic plate. To avoid optical distortions by the curved surface of the drop, we
viewed the solid/liquid contact through the plate. Direct vertical viewing did not give
sufficient contrast. To improve this we cut the plate to form a 30◦ wedge. We used
diffuse background lighting, with a high-intensity lamp shining on a paper screen. As
the light has to pass through the changing shape of the drop surface, this generates
uneven background lighting. Minor adjustments of the screen and lamp were therefore
required for different impact heights. We used a long-distance microscope to observe
the finer details.

Experiments were conducted over a range of impact conditions. The drops were
generated by a gravity-driven pinch-off from a nozzle, with the impact velocity U

being varied by changing the release height H of the nozzle above the surface.
Observations were performed with water, alcohol and water/glycerin mixtures. The
static contact angle of water on the acrylic plate was measured as θ = 59◦ and that of
80 % glycerin/water mixture as θ = 46◦ (figure 1c), whereas alcohol completely wets
the surface. The stainless steel needle used in most of the experiments had an inner
diameter of 2.5 mm. This generated water drops of diameter D = 4.0mm. For the
largest Weber/Reynolds numbers (figures 2a, 4a) a larger plastic valve was used, of
5mm OD and generated water drops of D −∼ 5.5 mm. This produced a total range for
the Weber and Reynolds numbers, based on liquid properties, the drop diameter D

and impact velocity U =
√

2g(H − D), of

We =
ρDU 2

σ
= 20–1500, Re =

DU

ν
= 5–30000.

2.2. Ultra-high-speed video camera

The air disk contracts in a fraction of a millisecond. Detailed observations therefore
required high-speed imaging, accomplished with a newly developed ultra-high-speed
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Figure 2. The air disks for the largest and smallest drop heights for water drops. (a) H =
100 cm and D= 5.5 mm, We= 1500, Re= 30 300. The time between the first three frames
dt = 10 µs, with the last frame 600 µs after the first. Notice the progenitors of the fingering,
as discussed in Thoroddsen & Sakakibara (1998). (b) H = 2.25 cm, D = 4.0 mm, We= 19,
Re= 2920, dt =20 µs, with the last frame 1120 µs after the first. The scale bars are 1mm long.

video camera (Etoh et al. 2003). Most of the results presented herein are taken at
frame-rates between 20–100 kHz. The camera uses simultaneous parallel recording
of all pixels, using memory within every pixel. The prototype (Shimadzu Corp.) can
acquire 103 consecutive frames, with each frame having 260 × 312 pixel elements
irrespective of the frame rate used. Thoroddsen, Etoh & Takehara (2003) have
previously used this camera to study the entrapment of air bubbles under a drop
impacting onto a flat liquid surface. The triggering is based on the drop cutting a
laser-beam/photo-diode setup. Slight sideways motions of the drops, during free-fall,
introduce as much as a 1 ms inaccuracy in this trigger timing. Numerous impacts may
therefore be needed to catch the first contact.

3. Results
Figures 2 and 3 show numerous impact sequences, for different liquids and impact

conditions. The contraction of the air disk can take as little as 60 µs. The outer extent
of the liquid contact gives an indication how close to the initial contact the first
frame has been captured. In a few of the clips, for the smallest impact heights, one
can observe an initial ‘shadow’ which we interpret as deformation of the drop taking
place before contact, e.g. shown by the arrow in panel 2 of figure 2(b). Only for the
larger Re � 7000 (figure 2a) did we observe the characteristic fingering of the lamellar
jet, as described in Thoroddsen & Sakakibara (1998). The edges of the air disks often
develop azimuthal serrations during the contraction and often leave a faint ring of
micro-bubbles marking the original line of contact, like in the last panel of figure 2(a).

3.1. Initial diameter of the air disk

Figure 4(a) shows the initial size of the air disk, caught under a water drop, vs. impact
Reynolds number Re. The size of the disk shows large variation, which depends
primarily on the phase of oscillation of the drop, which at the high We herein is large
following the pinch-off. The largest air disks are entrapped when the bottom of the
drop is flattest. Some of the bottom radii of curvature Rbc were measured in a
separate experiment, using images like those in figure 1(b). Figure 4(b) shows the Rbc

around the large spike in figure 4(a). The aim here is not to track the effects of every
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Figure 3. Contraction of the air disk, for various impact conditions. (a–e) Water drops
D = 4.0 mm. (a) H = 9.7 cm, We= 102, Re= 6740, dt = 10 µs. (b) Images from another clip
under the same conditions. The arrows point to a trumpet-shaped neck which subsequently
pinches off to form a microdrop at the centre, as sketched in figure 8. (c, d) Two realizations
for H = 4.4 cm, We= 44, Re= 4420, dt =10 µs. (e) H = 8.2 cm, We= 86, Re= 6170, dt = 10 µs.
(f ) Drop of alcohol, H = 2.5 cm, D = 3.1 mm, We= 50, Re= 1325, with dt = 20 µs. (g) More
viscous drop, 80% glycerin/water mixture, H = 11.2 cm. We −∼ 160, Re −∼ 100. Times shown
are 0, 20, 40, 60, 80, 120, 160, 220, 320, 720, 2000 µs. The white arrows point out the location
of the edge and the dark arrows point at a faint outer ring of micro-bubbles left behind. The
scale bars are 500 µm long.

minute change in the bottom curvature of the falling drop, but to verify the proposed
dependence, for the extreme case. For the data in figure 4(b) (Re ∼ 4000, We ∼ 30) we
find the initial radius of the air disk, Ri = (0.16 ± 0.04)Rbc. The largest air disks have
an initial diameter of 1.8 mm and are observed for H = 3.55 cm. Figure 1(b) shows
that the bottom of the drop in this case is close to being flat.

3.2. Speed of contraction of the air disk

Following the ideas in Thoroddsen et al. (2003, 2005), see also Oguz & Prosperetti
(1989) and Eggers, Lister & Stone (1999), we construct a model of the contraction
speed, where the radial velocity of the edge represents a balance between surface
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Figure 4. (a) The initial radius Ri of the air disk (�) and the radius of the bubble Rb after
it contracts (�) vs. Re, for water drops of D = 4.0 mm and H from 2.25 to 100 cm. The
corresponding We, range from 19 to 1500. (b) The bottom radius of curvature of the drop Rbc

in free-fall (figure 1b), vs. the release height from the nozzle H . The peak coincides (± 0.5mm)
with the largest disks in (a).
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Figure 5. The contraction of typical air-disks vs. time, for water drops D = 4.0 mm. (a) From
bottom to top the curves are for H = 20.2, 100, 2.25, 5.0 and 9.7 cm. (b) Contraction of the
largest air disks, for the three largest Ri in figure 4(a), which occur for slightly different release
heights of H = 3.5 (�, C = 1.18), 3.55 (other symbols, C = 1.35) and 3.6 cm (�, �, C = 1.02).

tension σ and inertia, i.e. u=dR/dt ∼ −
√

σ/(ρδ), where δ is the instantaneous average
thickness of the air sheet and ρ is the liquid density. This gives the time-evolution of
the disk radius

R(t) = Ri exp(−C
√

πσ/(ρV )t) (3.1)

where δ = V/(π R2) has been deduced from the total volume of air in the bubble
V and C is a proportionality constant. In Thoroddsen et al. (2003) for an air disk
caught under a drop impacting onto a liquid surface, C = 0.94 ± 0.13.

Figure 5 shows that the contraction along a solid surface also follows an exponential
curve. Figure 6(a) shows the corresponding values of C. However, in finding the value
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Figure 6. (a) The best-fit values of C in (3.1) for water drops D = 4.0 mm. The horizontal
line shows the average value of C = 0.94, obtained by Thoroddsen et al. (2003) for drop–liquid
impacts. Top right: bubble shapes after contraction of the air sheet, used to calculate error
bars, through the entrapped air volume. (b) δi vs. Ri for the same data.

of C we face the difficulty that the total amount of air is not easily measured, due
to the unknown contact angle. We can assume the contact line has reached the static
contact angle, but this may not occur during the first millisecond after contact, even
though the fast motions have subsided. We therefore include a range of C around this
value, accounting for the air volume, from a maximum of a sphere to the minimum
of a hemisphere.

The data show considerable scatter, with no clear trend in this range of Re. The
average value of C = 0.88, with an r.m.s. variation of 0.14, is quite close to the
average for drop–liquid impacts, shown by the horizontal line.

The largest disks, for H = 3.55 cm in figure 5(b), contract more slowly than
predicted by (3.1), with the largest of the disks contracting the slowest. We believe
this is caused by excess air caught in a dimple at the centre. In comparison, the slightly
smaller entrapped disks, for H = 3.5 and 3.6 cm, follow closely exponential curves.

Figure 6(b) shows a clear correlation between the average initial thickness of the
air sheet δi and the initial size of the disk Ri . Figure 4 showed that Ri is related to
the bottom radius of curvature Rbc, but our limited data for Rbc cannot decouple the
effects of We and Rbc over the full range of H .

Figure 3( f ) shows the contraction for an alcohol drop. Here the contact line
appears more unstable, forming larger serrations at the edge. For alcohol, we can
get an accurate estimate of the air volume, as it fully wets the acrylic substrate and
the bubble separates from the surface. This was verified in an anomolous clip, where
the impact was asymmetric and the bubble drifted with the average flow. For the
parameter range studied for alcohol drops (We ∼ 70–900, Re ∼ 1600–5800), we find
from a handful of realizations that C = 0.79 ± 0.14. For these conditions the average
initial thickness of the air disk δi becomes (4/3)(R3

b/R
2
i ) = 1.9 µm.

3.3. Capillary waves and centre contact

Figure 7(a) shows that the capillary waves propagate from the edges of the contracting
sheet towards the centre. Figure 8 shows the proposed evolution, as the waves converge
and their amplitude grows until the crest touches the substrate, pinching off a small
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Figure 7. (a) Capillary waves on the surface of the contracting layer of air, for H = 3.55 cm,
We= 34 and Re= 4200. This clip ends just before the wave makes contact with the substrate,
dt = 10 µs. (b) The pinch-off and the subsequent oscillations of the microdrop and the bubble,
dt = 50 µs. Both scale bars are 1mm.

Figure 8. Sketch (based on figure 7) of the proposed pinch-off of a droplet inside the
bubble, with arbitrary, but greatly exaggerated, vertical scale.

droplet at the centre of the bubble. With the pinned contact lines, it is not obvious
that minimization of the surface energy would promote this pinch-off over a toroidal
surface, but the pinch-off is clearly supported by the oscillations observed in the clips.
This is shown in figure 7(b). The centre contact of the capillary wave with the solid
surface occurs in the third frame and the pinch-off takes place in the eighth frame.
Following this pinch-off the two surfaces oscillate with different frequencies. This is
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Figure 9. Realization where the centre does not touch the plate, for the same impact
conditions as in figure 7. The first nine panels are 100 µs apart with the last two at 1080
and 2020 µs after the first panel. Scale bar is 1mm.

more easily observed in the moving images than from the sequence of still frames. We
therefore point out repeated patterns associated with the oscillations. The extent of
the top arch changes during the oscillation of the bubble surface. This arch reaches
maximum length every ninth frame, as marked by the dark arrows. This corresponds
to a frequency of 2200 Hz. The oscillations of the micro-drop are much faster, as
revealed by a bright spot at its top, marked by the white arrows. This spot appears at
intervals of 150 µs, giving a frequency of 6700 Hz. A video clip taken under the same
impact conditions is available as a supplement to the online version of this paper.

These values can be compared to the oscillation frequencies of an inviscid drop,
Lamb (1932, § 275), where ω2

n = n(n − 1)(n + 2) σ/(ρ R3), which for a water drop of
the measured radius, R = 110 µm, gives a frequency of ω3/2π = 6450 Hz for mode 3,
which we have selected due to the pinned equator. Similarily, for a bubble of R =
220 µm, ω2

n = (n + 1)(n − 1)(n + 2) σ/(ρ R3), which gives ω3/2π = 2600 Hz. Both of
these values are reasonably close to the observations and support our conclusion that
the micro-drop is indeed pinched off inside the bubble. Figure 3(a, b) shows a similar
pinch-off for smaller air-disks. Here the micro-droplets have radii of only 35 µm.

Figure 8 sketches the proposed pinch-off evolution. The neck above the micro-
droplet is visible in the arrowed frames in figure 3(a, b). Due to the complicated
optical paths and curved liquid surfaces, it is sometimes not obvious which features
produce the intensity pattern in the images. To further demonstrate that the centre-
drop in figures 3(a, b) and 7 is not an optical illusion, we include in figure 9 the
one realization where the capillary wave did not touch the plate at the centre of the
bubble, therefore producing no micro-drop at its centre. Notice also the large light
spot/ring to the lower left, which is light focused by passing through the top of the
drop. The arrow points to a much smaller light ring formed by the light passing
through the top of the entrapped bubble.

Once the speed of contraction has slowed down, the capillary waves overtake the
edge and propagate towards the centre. The speed of propagation can be roughly
estimated, as u = 3 m s−1 (from the fifth to last frames in the third row of figure
7a). This is close to the group velocity for the measured wavelength, λ = 140 µm,
i.e. cg = 1.5

√
2π σ/(ρλ) = 2.7 m s−1, keeping in mind that the estimate of λ is quite

inaccurate. This supports the capillary nature of these waves.

3.4. The effect of changing liquid viscosity

The effect of viscosity was investigated using glycerin/water mixtures. Figure 10(a)
shows how increased viscosity slows down the contraction speed of the air-disk.
For the smallest Reynolds number, based on the viscous time scale (Eggers et al.
1999), i.e. Reµ = ρRdropσ/µ2 −∼ 1, the motion proceeds at a constant velocity u =
0.28m s−1 −∼ 2.6σ/µ.

Figure 10(b) shows the reduction in C with increasing liquid viscosity, determined
from best-fit exponential curves to data similar to those shown in figure 10(a). These
changes are shown in terms of the Ohnesorge number Oh = µ/

√
Dσρ. The reduction
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Figure 10. The effect of viscosity on the contraction speed. (a) Best-fit exponential curves for
50% to 99% glycerin/water mixtures. The corresponding dynamic viscosities are µ = [4.5
(�), 16 (�), 50 (�), 121 (∗) and 602 (+)] × 10−3Ns m−2. (b) The best-fit C-values vs. Oh.

Figure 11. Impact of a 99% glycerin drop, with We = 136 and Re = 8. Frames are spaced
by dt = 50 µs, with last frame 2100 µs after the first. Scale bar is 500 µm. The contrast is
particularly faint, as the refractive index of the glycerin is close to that of the plate.

in speed can roughly be approximated as C ∝ 1/
√

Oh. The average thickness of the
air disk for the more viscous liquids is around 2 µm.

For the largest viscosity the air disk resembles a fried egg, figure 11, with a
prominent brighter ring around the centre region, and an irregular region of air at the
periphery. The whole region appears to be connected, without touching the surface, as
it all contracts into a central bubble. From watching the contraction, it appears that
the lighter ring represents a thinner layer of air, but more detailed study is required to
explain its formation. The outer irregular region leaves myriad micro-bubbles behind,
some of which are visible by their bright reflections marked by arrows in the later
frames.

4. Discussion and conclusions
These measurements show that the contraction velocity is very similar to the

corresponding case of an air disk caught when a water drop impacts onto a liquid
surface. This suggests that the dynamics are governed by the contraction of the air-
disk to minimize surface energy, rather than wetting of the liquid along the surface,
which would be a much slower process. The initial ring of micro-bubbles is also
consistent with this view. The no-slip condition at the wall should increase viscous
shear forces, but for water this does not appear to be dominant.

The air disks are significantly thicker herein, δi ∼ 2–5 µm, than in the drop–liquid
case, Thoroddsen et al. (2003), where δi ∼ 1–2.5 µm. We can speculate that the com-
pliance of the liquid surface allows more time for air drainage from the sheet before
contact. The no-slip boundary condition at the air–solid interface may also play a role.
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The fact that the normalized contraction speeds, i.e. C-values in the model, are
similar for the water (θ = 59o) and alcohol, which wets the acrylic plate, suggests
that the wettability of the liquid does not affect the contraction of the air disk, as it
occurs much faster than typical wetting, de Gennes (1985). Experiments by Biance,
Clanet & Quéré (2004) show the same to be true for the initial capillary–inertial
regime of wetting for a drop touching a glass plate, where they find the speed to be
the same whether the plate is dry or wet. They propose that a microscopic precursor
film makes the dynamics independent of the spreading parameter. Our model of the
contraction speed does not include the dynamic contact angle at the plate and is
based on the average thickness of the air sheet, whereas a thicker edge can be seen to
develop. However, here this edge has negligible inertia, in contrast with the rupture
waves described by Taylor (1959) and Rozhkov, Prunet-Foch & Vignes-Adler (2002).

The ring of micro-bubbles left at the initial contact radius (figure 2a) might
therefore occur before this precursor film has been established. However, the largest
radial velocity occurs at the onset of the contraction u −∼ C

√
σ/(ρδi) −∼ 5 m s−1, which

for water gives a capillary number Ca = µU/σ −∼ 0.07, far below the critical Ca for
dynamic wetting, Jacqmin (2002). This suggests that the initial contact might be ir-
regular in the azimuthal direction, thereby entrapping the initial ring of micro-bubbles.

Serrations appear on the contact line, with their number decreasing during the
contraction, for example going from about 20 to 10 in 10 µs, see figure 3(c), frames
3 to 4. This is reminiscent of the results in Thoroddsen et al. (2003) for capillary
instability at the thicker edge, but the dynamics must be different here owing to the
presence of the contact line. Even faster imaging and larger magnifications are needed
to observe the details of the evolution of the edge and the effects on it of wettability
and surface roughness.

In conclusion, we have presented the first time-resolved imaging of the entrapment
of an air-disk caught under a drop impacting onto a solid surface, measuring its
contraction speed and discovering an intriguing capillary phenomenon, where a
micro-droplet is pinched off inside the entrapped bubble.

We thank H. Yamaguchi and M. Yoshitake for their help with the experiments.
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